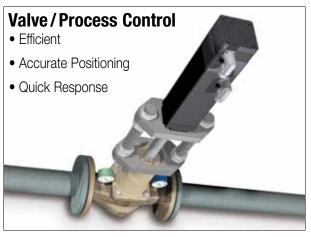
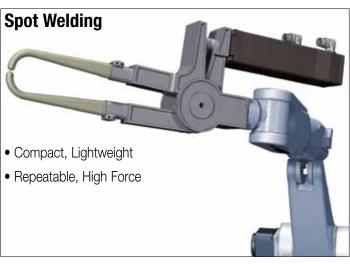


INTEGRATED MOTOR ROD-STYLE ACTUATOR

The longest lasting, high-force integrated actuator on the market!

The IMA is a compact, durable, high force rod-style actuator. The IMA integrates a servo motor into a ball or roller screw-driven actuator to provide efficient high force in a compact lightweight design envelope. Our patent-pending design allows for easy re-lubrication without disassembly for extremely long service life.





CONTENTS		
What is the IMA?2	IMA Specs & Performance 6-10	Selection Guidelines 18
IMA Applications 3	IMA Dimensions11-16	Ordering 19
IMA Features 4	Application Data Worksheet 17	

IMA Applications

More Applications:

- Aerospace
- Animation
- Assembly
- Automated assembly
- Automatic tool changers
- Automotive
- Clamping
- Converting
- Conveyors
- Cycle testing
- Fillers

- Formers
- Hydraulic replacement
- Laser positioning
- Machine tools
- Material handling systems
- Medical equipment
- Military
- Molding
- Motion simulators
- Open/close doors
- Packaging equipment

- Parts clamping
- Patient lifts
- Pick & place
- Pneumatic replacement
- Precision grinders
- Product test simulations
- Riveting / fastening / joining
- Robot manipulator arms
- Sawmill equipment

- Semiconductor
- Stamping
- Table positioning
- Tension control
- Test stands
- Tube bending
- Volumetric pumps
- Water jet control
- Wave generation
- Web guidance
- Welding
- Wire winding

IMA INTEGRATED MOTOR ACTUATOR

○ENDURANCE TECHNOLOGY

Endurance Technology features are designed for maximum durability to provide extended service life.

The IMA is a compact, durable, high force rod-style actuator. The IMA integrates a servo motor into a ball or roller screw-driven actuator to provide efficient high force in a compact lightweight design envelope. Our patent-pending design allows for easy re-lubrication without disassembly for extremely long service life. Built-to-order in stroke lengths up to 18 inches with your choice of screw technology.

• MULTIPLE SCREW TECHNOLOGIES YOU CAN CHOOSE:

•Ball nuts offer efficiency at a cost effective price

•Roller nuts provide the highest thrust and life ratings available

HIGH POSITIONAL ACCURACY

SCREW ACCURACY

Roller Nut ± 0.0004 "/ft. ± 0.0102 mm/300mm Ball Nut ± 0.002 "/ft. ± 0.051 mm/300mm

REPLACEABLE BEARING CARTRIDGE

•Doubles as a locating pilot for positioning actuator

OROD WIPER

• Prevents contaminants from entering the actuator for extended life

OGREASE PORT

- Patent pending screw relubrication system provides extended screw service life
- •Convenient lubrication without disassembly

INTEGRAL MOUNTING

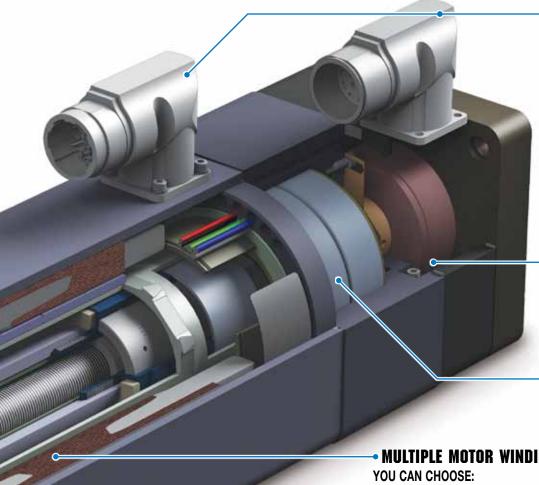
•Four metric threaded holes on front face are available for direct mounting or addition of customized options

•THREADED ROD END ←

- Zinc plated alloy steel construction for corrosion resistance
- Provides a common interface to multiple rod end options

• THRUST TUBE

- Steel thrust tube supports extremely high force capabilities
- •Salt bath nitride treatment provides excellent corrosion resistance, surface hardness and is very resistant to adherence of weld slag, water and other potential contaminants


ointernal bumpers?

 Bumpers protect the screw and nut assembly from damage at end of stroke

LIGHTWEIGHT ALUMINUM DESIGN

 Black anodized extrusion design is optimized for rigidity and strength

CONNECTORS • YOU CAN CHOOSE FROM:

- Connector choice and wiring emulates popular motor manufacturers for compatibility:
- Tolomatic Standard
- Bosch Rexroth MSK Series
- Emerson FM & NT Series
- Lenze MCA Series
- -more to come...
- STAGGERED CONNECTORS for convenient installation
- 270° Rotatable & Box mount options available

HIGH RESOLUTION. FEEDBACK YOU CAN CHOOSE:

- Digital encoder
- Multi-turn absolute encoder
- Resolver

⇒HIGH THRUST BEARING•

 Provides complete support of screw and protects the feedback device from linear forces

MULTIPLE MOTOR WINDINGS

- •230V or 460V rated windings potted directly into actuator housing
- •Skewed motor windings provide minimal torque ripple for smooth linear motion
- •Integral thermal switch for over temperature protection
- •1 stack motor (MV21-230V & MV41-460V) available for the IMA33, allows strokes between 3 and 6" providing the thrust needed for many applications in a more compact, lighter weight package

osmooth Body Designo

• Eliminates potential contaminant collection points

Modifications:

 Contact Tolomatic for white epoxy, stainless steel, food grade or mil-spec versions of the IMA

OPTIONS

MOUNTING

• Side Mounting Holes, 2 sides & bottom (no photo)

Mounting Plates

• Rear Clevis

• Front Flange • Trunnion, Rear or Front

ROD END

• Internal Thread - Standard

BRAKE

CABLES

• External Threads

electronically released

• Signal Cable (6m)

• Power Cable (6m)

• 24V Spring held

 Spherical Eye Alignment Coupler

> **IP67** • For protection against water and dust ingress

AR0

Anti-Rotate

Performance & Mechanical Specifications:

	SERIES		•	ack, MV2		IMA	33 (3 Sta	ack, MV2	3/43)		IM	A44	
	in		3.3						4	.4			
FACE SIZE	mm				8	3					1	10	
OTDO!/F	in		3.0 t	:0 18.0					6.0	to 18.0			
STROKE	mm		76.2 t	0 451.2					152.4	to 451.2			
N	UT/SCREW	BN05	BN10	RN05	RN10	BN05	BN10	RN05	RN10	BN05	BN10	RN05	RN10
SCREW LEAD	in	0.197	0.394	0.197	0.394	0.197	0.394	0.197	0.394	0.197	0.394	0.197	0.394
JUNEW LLAD	mm	5	10	5	10	5	10	5	10	5	10	5	10
DYNAMIC	lbf	1,709	1,214	6,564	5,020	1,709	1,214	6,564	5,020	3,395	3,372	8,280	7,392
LOAD RATING (1 mil revs)	N	7,602	5,400	29,198	22,330	7,602	5,400	29,198	22,330	15,100	15,000	36,831	32,881
SCREW LEAD	in/ft	0.0		0.0		0.0			004		02		004
ACCURACY	mm/300		051		102	0.0			102		051		102
	in	0.004	0.004	0.0012	0.0012	0.004	0.004	0.0012	0.0012	0.005	0.005	0.0012	0.0012
BACKLASH	mm	0.1	0.1	0.03	0.03	0.1	0.1	0.03	0.03	0.13	0.13	0.03	0.03
CONT.	lbf	365	183	350	175	900	450	850	425	1,750	875	1,650	825
THRUST	N	1624	814	1,557	778	4,003	2,002	3,781	1,891	7,784	3,892	7,340	3,670
PEAK	lbf	730	366	700	350	1,000	900	1,700	850	2,000	1,750	3,300	1,650
THRUST	N	3,247	1,628	3,114	1,557	4,448	4,003	7,562	3,781	8,896	7,784	14,679	7,340
MAX.	in/sec	13	26	13	26	11.5	23	11.5	23	11.5	23	11.5	23
VELOCITY	mm/sec	330	660	330	660	292	584	292	584	292	584	292	584
DACE WEIGHT	lb		11.4 14.1 28.6										
BASE WEIGHT	kg		÷	5.2			(6.4			1	3	
WEIGHT PER	lb/in				0.6	603					1.1	035	
UNIT OF STROKE	kg/mm				0.0	118				0.0197			
**BASE	lb-in ²	0.9305	0.9349	0.9310	0.9370	1.6485	1.6530	1.6508	1.6567	3.3107	3.3205	3.2851	3.2969
INERTIA	kg-cm²	2.7216	2.7346	2.7231	2.7406	4.8220	4.8349	4.8284	4.8459	9.6838	9.7126	9.6090	9.6434
INERTIA	lb-in²/in	0.0027	0.0031	0.0036	0.0041	0.0027	0.0031	0.0036	0.0041	0.0181	0.0187	0.0098	0.0106
PER UNIT OF Stroke	kg-cm²/mm	0.0003	0.0004	0.0004	0.0005	0.0003	0.0004	0.0004	0.0005	0.0021	0.0022	0.0011	0.0012
BREAKAWAY	in-lb	4.8	4.8	5.3	5.3	4.8	4.8	5.3	5.3	5.6	5.6	6.2	6.2
TORQUE	N-m	0.54	0.54	0.60	0.60	0.54	0.54	0.60	0.60	0.63	0.63	0.70	0.70
BACK DRIVE	lbf	78	39	78	39	78	39	78	39	91	46	91	46
FORCE*	N	347	173	347	173	347	173	347	173	405	205	405	205
TEMP DANCE	°F		50 to 122										
TEMP RANGE	°C	10 to 50											
IP RATING		Standard IP65, Optional IP67 (Static)											
REL. HUMIDITY (NON-CONDENSING)		5 to 90%											
SHOCK						20g peal	k, 6 msec	duration					
VIBRATION	2.5g 302,000 Hz												

^{*}In vertical applications an unpowered IMA will require a brake to maintain position if the load on the actuator exceeds this value **Value given is for a zero stroke actuator

Performance data was validated using an aluminum face mount plate: IMA33 (8.25" x 7.0" x 0.7"); IMA44(9.0" x 9.0" x 0.7")

Motor Specifications:

	SERIES		IMA	A33		IMA	\44
WINDING/MOTOR	VOLTAGE	MV21	MV41	MV23	MV43	MV23	MV43
TORQUE	in-lb/A Peak	5.4	10.7	5.5	10.7	5.4	10.6
CONSTANT (Kt)	N-m/A Peak	0.61	1.21	0.62	1.21	0.61	1.20
VOLTAGE CONSTANT (K _e)	V/Krpm Peak	81	160	79.8	154	78.1	153.1
CONTINUOUS	in-lb	1	6	39	38	74	75
STALL TORQUE	N-m	1.8		4.4	4.3	8.4	8.5
CONTINUOUS STALL CURRENT	Arms	2.1	1.1	5	2.5	9.7	5
DEAK TODOUE	in-lb	32		78	76	148	150
PEAK TORQUE	N-m	3.6		8.8	8.6	16.7	16.9
PEAK CURRENT	Arms	4.2	2.2	10	5	19.4	10
RESISTANCE	Ohms	10	40.1	2.07	8.3	0.58	2.32
INDUCTANCE	mH	13.6	54.1	3.8	15	2.75	11.5
NO. OF POLES				8	3		
BUS VOLTAGE	Vrms	230	460	230	460	230	460
SPEED @ Rated v	RPM	40	00		35	00	

SIZE AN IMA, RIGHT AT YOUR DESK!

SIZING

SOFTWARE

FREE - Windows® compatible software, download at www.tolomatic.com

Tolomatic's sizing software is a great tool to help size and select the right IMA.

OR Contact Tolomatic for assistance in choosing the

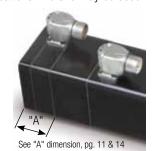
correct IMA actuator and options required for your

application.

RoHs Compliant Components;

c**™**us (€. Approval Pending

Performance data was validated using an aluminum face mount plate: IMA33 (8.25" x 7.0" x 0.7"); IMA44 (9.0" x 9.0" x 0.7")


BRAKE CONSIDERATIONS

An unpowered IMA will require a brake to maintain its position if the force on the actuator exceeds Back Drive Force listed in the table on page $_{\text{IMA}}$ _6.

A brake can be used with the actuator to keep it from backdriving, typically in vertical applications. A brake may be used

for safety reasons or for energy savings allowing the actuator to hold position when unpowered. See page IMA_19 for ordering information.

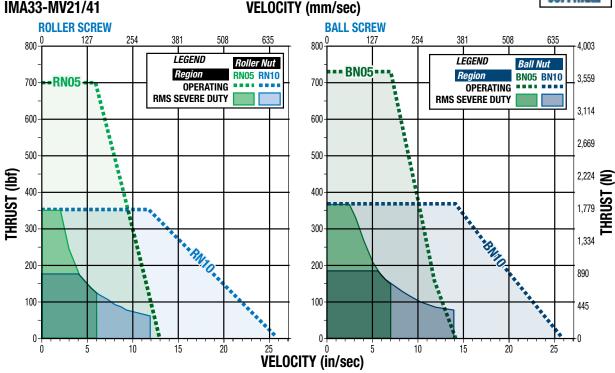
NOTE: The optional Spring-Applied / Electronically-Released Brake requires 24V power. Input current rating: IMA33 - 0.43 Amps; IMA44 - 0.67 Amps.

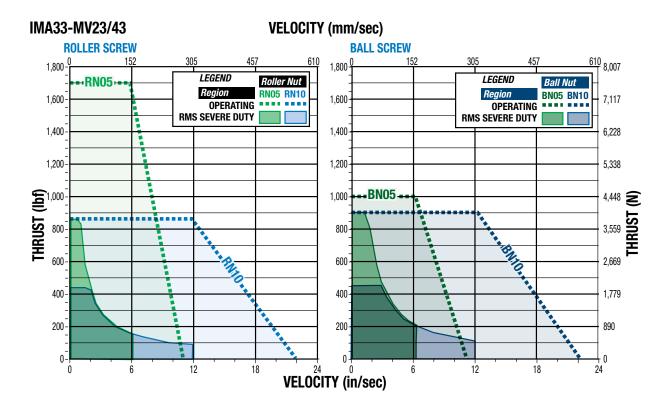
Brake Specifications:

	SERIES	IMA33	IMA44
ROTOR	oz-in²	0.112	0.656
INERTIA	gm-cm ²	73	239
CURRENT	Amp	0.43	0.67
HOLDING	in-lb	35	89
TORQUE	N-m	4.0	9.0
ENGAGE TIME	mSec	40	25
DISENGAGE TIME	mSec	50	35
VOLTAGE	Vdc	24	24

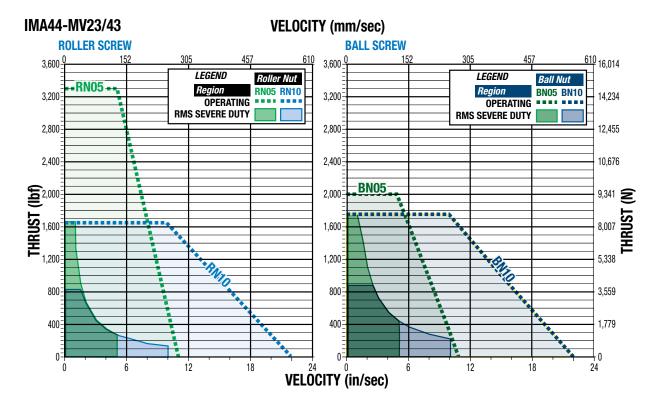
SIDE LOAD CONSIDERATIONS

The IMA integrated motor actuator is not meant to be used in applications where side loading occurs.


Loads must be guided and supported. Loads should be aligned with the line of motion of the thrust rod.


Side loading will affect the life of the actuator.

SPEED vs THRUST



OPERATING REGION is the maximum performance capabilities of the actuator system. Higher peak thrusts are achievable by servo motor actuator systems, so please consult Tolomatic before exceeding catalog rating.

SEVERE DUTY REGION is defined as the RMS thrust and velocity limit that is derived from the thermal limits of the actuator system to achieve the dynamic load rating of the screw. (Example: Extend and retract under force 100% of the time with no dwells.)

SPEED vs THRUST

CALCULATING RMS THRUST AND VELOCITY FOR SEVERE DUTY

Servo motor actuator systems have two speed / thrust curves: one for severe duty (continuous) and another for operating region (intermittent or peak). The root mean square (RMS) thrust & velocity is based on the application duty cycle and must fall within the severe duty region of the actuator system. The application maximum thrust & velocity must fall within the operating region of the actuator system. Higher peak thrusts are achievable by the actuator system, so please consult Tolomatic before exceeding catalog ratings. Use the following formulas when calculating the RMS thrust & velocity. When selecting a servo motor actuator system, it is recommended to add a margin of safety of 15% to the thrust and velocity required to move the load.

$$\begin{split} \textbf{T}_{\text{RMS}} &= \sqrt{\frac{\text{sum } (\textbf{T}_i^2 \times \textbf{t}_i)}{\text{sum } (\textbf{t}_i)}} \\ \textbf{V}_{\text{RMS}} &= \sqrt{\frac{\text{sum } (\textbf{V}_i^2 \times \textbf{t}_i)}{\text{sum } (\textbf{t}_i)}} \\ \end{bmatrix} & \\ \textbf{Where:} \\ \textbf{T}_{\text{RMS}} &= \text{RMS Thrust} \\ \textbf{V}_{\text{RMS}} &= \text{RMS Velocity} \\ \textbf{T}_i &= \text{Thrust during interval i} \\ \textbf{V}_i &= \text{Velocity during interval i} \\ \textbf{t}_i &= \text{Time interval i} \\ \end{split}$$

CALCULATING LUBRICATION INTERVAL

IMA actuators require periodic re-lubrication to maintain optimal performance. Below are formulas to help determine lubrication interval. See IMA User Guide (#2700-4001) for formula definitions, complete instructions and examples.

BALL SCREW

STEP 1: $\mathbf{P}_{\text{IMA}} = \mathbf{V}_{\text{RMS}} \times \mathbf{T}_{\text{RMS}} \times 0.113$ (watts)

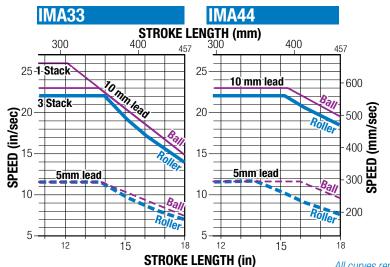
STEP 2. Select the appropriate actuator power level \mathbf{P}_{c}

STEP 3:
$$\mathbf{K}_{P} = \frac{\mathbf{P}_{C}}{\mathbf{P}_{DMA}}$$
 $\mathbf{P}_{C} = \frac{33}{105} = \frac{44}{185}$

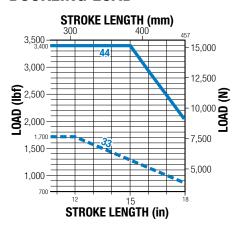
STEP 4:
$$\mathbf{t}_1 = 1000 \text{ (hours)} = \mathbf{K}_p < 1$$

 $\mathbf{t}_1 = 9000 \text{ (hours)} = \mathbf{K}_p > 1$

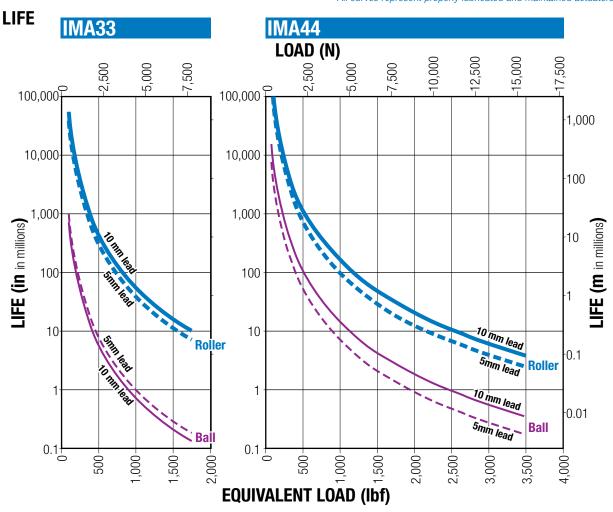
• Re-lubricate with Mobilith SHC220 Grease #2744-1016 (Quantity: IMA33: 3.0 g; IMA44: 5.0 g) into the grease zerk located on the rod end.


ROLLER SCREW

STEP 1: $\mathbf{t}_{BL} = 4500 \text{ x } (\mathbf{V}_{RMS})^{-1.57} \text{ (hours)}$


• Re-lubricate with Tolomatic Grease #2744-9099 (Quantity: IMA33: 3.0 g; IMA44: 5.0 g) into the grease zerk located on the rod end.

AVAILABI TOLOM


CRITICAL SPEED

ROLLER SCREW BUCKLING LOAD

All curves represent properly lubricated and maintained actuators.

NOTE: The **L**₁₀ expected life of a ball and roller screw linear actuator is expressed as the linear travel distance that 90% of properly maintained ball and roller screws manufactured are expected to meet or exceed. This is not a guarantee and this graph should be used for estimation purposes only.

The underlying formula that defines this value is:

$$\mathbf{L}_{10} = \left(\begin{array}{c} \mathbf{C} \\ \mathbf{F} \end{array} \right)^3 \bullet \ \mathscr{L} \equiv$$

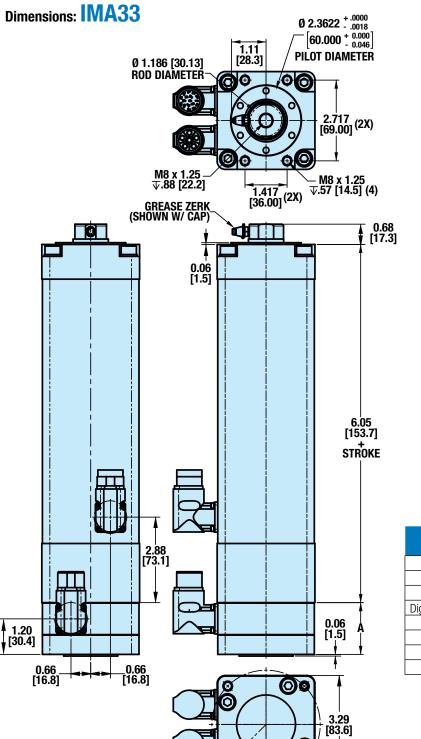
Travel life in millions of inches, where:

C = Dynamic load rating (lbf) **F** = Equivalent load (lbf)

 ℓ = Screw lead (in/rev)

Use the "Equivalent Load" calculation below, when the load is not constant throughout the entire stroke. In cases where there is only minor variation in loading, use greatest load for life calculations.

Where:

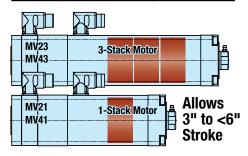

 $= \sqrt[3]{\frac{\%(\mathbf{P}_1)^3 + \%(\mathbf{P}_2)^3 + \%(\mathbf{P}_3)^3 + \%(\mathbf{P}_n)^3}{100}}$

 \mathbf{P}_{e} = Equivalent load (lbs)

 \mathbf{P}_{n} = Each increment at different load (lbs)

 $%_{n}$ = Percentage of stroke at load increment

 $_{\overline{\psi}.65}^{ extsf{M8}}$ x 1.25 (4)


В

[83.6]

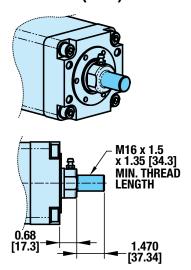
IMA33

KEY FEATURES: 1-STACK **MOTORS**

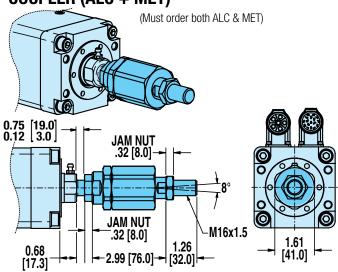
SERIES		MV21/41	MV23/43	
STROKE	in	3.0 to 18.0	6.0 to 18.0	
SINUKE	mm	76.2 to 451.2	152.4 to 451.2	
PEAK	lbf	up to 730	up to 1,700	
THRUST	N	up to 3,247	up to 7,562	

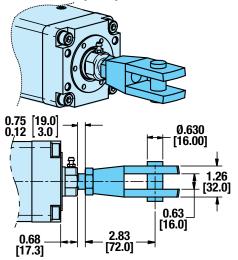
FEEDBACK	DIM	"A"
FEEDDAGK	in	mm
Digital Encoder	1.74	44.2
Digital Encoder with Brake	3.18	80.8
Digital Encoder (Emerson NT)	1.98	50.3
Digital Encoder with Brake (Emerson NT)	3.68	93.5
Resolver	1.74	44.2
Resolver with Brake	3.18	80.8
Absolute Encoder	2.33	59.2
Absolute Encoder w/ Brake	3.96	100.6

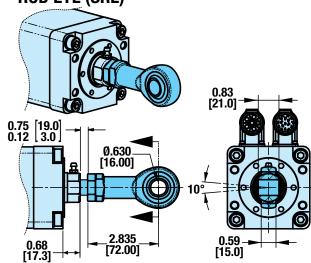
CONNECTORS	DIM "B"		
CONNECTORS	in	mm	
Tolomatic Standard			
Bosch MSK Motor Series	4.81	122.2	
Emerson FM Series	4.01		
Lenze MCS Motor Series			
Emerson NT Series**	4.81	122.2	


^{**}Uses Box Mount Connectors (IP67 not available)

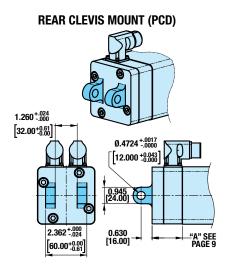
Ø 1.9685 +.0000 -.0015 50.000 +0.000 -0.038

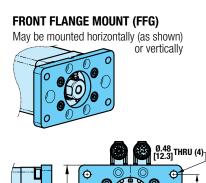

Optional Rod End Dimensions: IMA33


EXTERNAL THREADED ROD END (MET)

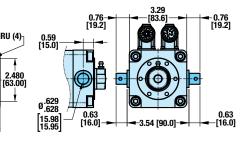

ALIGNMENT COUPLER (ALC + MET)

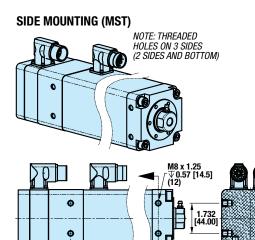
CLEVIS ROD END (RCL)



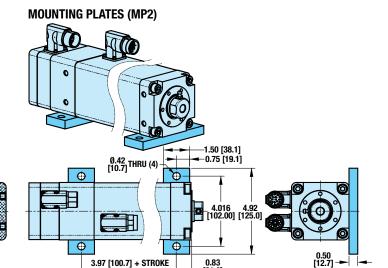

SPHERICAL ROD EYE (SRE)

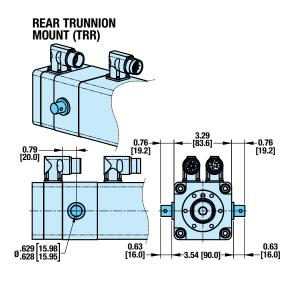
Dimensions: IMA33

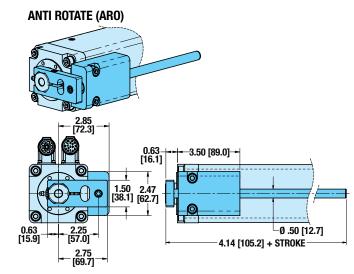

Φ


1.732 [44.00]

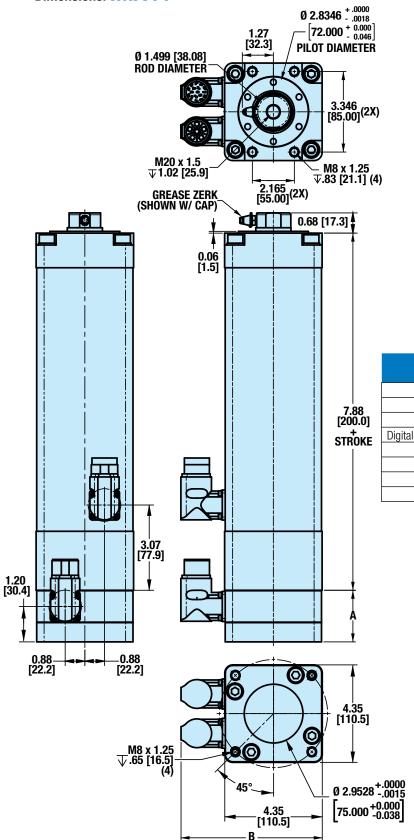
0.83 [21.0] 4.961[126.00]-


5.91[150.0]





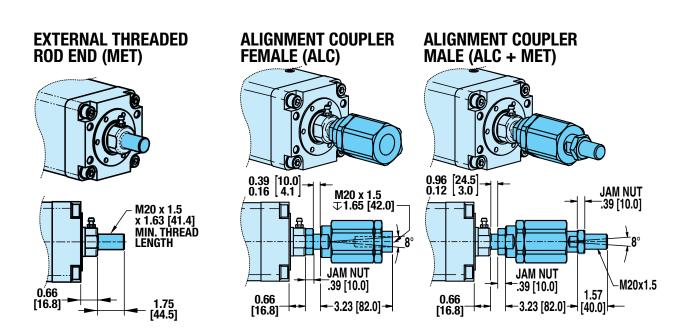
3.97 [100.7] + STROKE



NOTE: When ARO is used together with FFG stroke is reduced by 0.45" [11.4 mm]

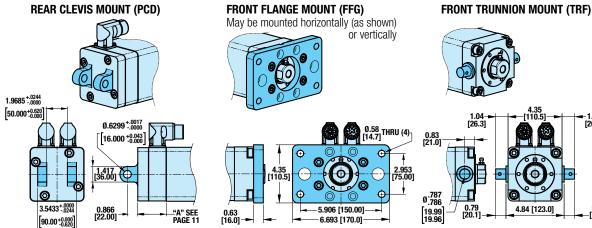
Dimensions: IMA44

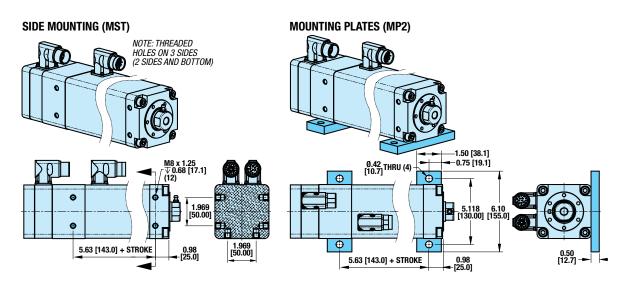
FEEDBACK	DIM	"A"
FEEDDAGK	in	mm
Digital Encoder	1.74	44.2
Digital Encoder with Brake	3.15	80.0
Digital Encoder (Emerson NT)	1.98	50.3
Digital Encoder with Brake (Emerson NT)	3.50	89.0
Resolver	1.74	44.2
Resolver with Brake	3.15	80.0
Absolute Encoder	2.33	59.2
Absolute Encoder with Brake	3.90	99.1

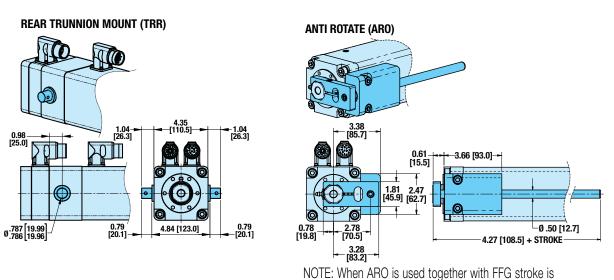

CONNECTORS	DIM	"B"	
CONNECTORS	in	mm	
Tolomatic Standard			
Emerson FM Series	5.89	149.6	
Lenze MCS Motor Series			
Bosch MSK Motor Series	5.89	149.6	
Emerson NT Series**	5.50	139.7	

^{**}Uses Box Mount Connectors (IP67 not available)

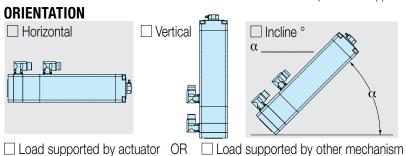
Optional Rod End Dimensions: IMA44






Dimensions: IMA44

←1.04 [26.3]



reduced by 0.51" [13.0 mm]

APPLICATION DATA WORKSHEET Fill in known data. Not all information is required for all applications

MOVE PROFILE	STROKE LENGT		PRECISION	
EXTEND Move Distance		□ millimeters (SM) ^{Metric)}	Repeatability	☐ millimeters
☐ inch ☐ millimeters Move Timesec	NOTE: If load or fo	rce changes during cycle mbers for calculations	OPERATING EN Temperature, Con	VIRONMENT tamination, Water, etc.
Max. Speed mm/sec	EXTEND	RETRACT		
Dwell Time After Movesec	LOAD kg	. □ lb. □ kg.		
RETRACT	(U.S. Standard) (Metric)	(U.S. Standard) (Metric)		
Move Distance millimeters	FORCE kg			
Move Timesec Max. Speed	(U.S. Standard) (Metric)	(U.S. Standard) (Metric)		
□ in/sec □ mm/sec	MOTION PROFIL	F		
Dwell Time After Movesec	+ -Speed ()			Graph your most
NO. OF CYCLES per minute ☐ per hour				demanding cycle, including accel/decel velocity and dwell times. You may also want to indicate load variations and I/O
HOLD POSITION? ☐ Required				changes during the cycle. Label axes with proper scale and
☐ Not Required☐ After Move☐ During Power Loss☐ During Power Loss☐ During Power Loss☐ Not Required☐				units.
			Time or Distance	9()-
	_			
CONTACT				
INFORMATION Name, Phone, Email Co. Name, Etc.				

STOP

USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC AT 1-800-328-2174. We will provide any assistance needed to determine the proper actuator for the job.

FAX 1-763-478-8080

EMAIL help@tolomatic.com

Selection Guidelines

ESTABLISH MOTION PROFILE

Using the application stroke length, desired cycle time and loads establish the motion profile details.

COMPARE OPERATING (PEAK) THRUST AND SPEED TO OPERATING REGION

Calculate the application required operating (peak) thrust and speed and compare to graphs on pages IMA_8-9. The calculated thrust and speed must fall within the operating region of the actuator.

COMPARE SEVERE DUTY (CONTINUOUS) THRUST AND SPEED TO SEVERE DUTY REGION

Calculate the RMS thrust and speed required and compare to graphs on pages IMA_8-9. The calculated thrust and speed must fall within the severe duty region. See complete instructions on IMA_page 9 for help calculating continuous force.

$$\mathbf{T}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{T}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}} \quad \mathbf{V}_{\text{RMS}} = \sqrt{\frac{\text{sum } (\mathbf{V}_{i}^{2} \times \mathbf{t}_{i})}{\text{sum } (\mathbf{t}_{i})}}$$

CONSIDER SCREW/NUT CHOICES

Choose roller nuts for its longer life (see Life graph on page IMA_10) and higher peak loads (see graphs on pages IMA_8 & 9). Ball nuts are cost competitive and more efficient (see table on page IMA_8).

SCREW ACCURACY

Roller Nut ± 0.0004 "/ft. ± 0.0102 mm/300mm Ball Nut ± 0.002 "/ft. ± 0.051 mm/300mm

VERIFY CRITICAL SPEED OF THE SCREW

Verify that the application's peak linear velocity does not exceed the critical speed value for the size and lead of the screw selected.

VERIFY AXIAL BUCKLING STRENGTH OF THE SCREW (ROLLER SCREW)

Verify that the peak thrust does not exceed the critical buckling force for the size of the screw selected (see graph on page IMA_10).

MOTOR WINDINGS & VOLTAGES

Choose motor windings optimized for 230 Vac and 460 Vac voltage busses. The 1 stack motor (MV21-230V & MV41-460V), available for the IMA33, allows strokes between 3 and 6" providing the thrust needed for many applications in a more compact, lighter weight package

CALCULATE LUBRICATION INTERVAL

See page IMA_9 for an overview and IMA Users Guide (#2700-4001) for complete instructions to calculate lubrication interval.

TEMPERATURE

The IMA is intended to operate in an environment with an ambient temperature between 50-122°F, (10-50°C). Performance should be de-rated if the ambient temperature is above 77°F (25°C). Contact the factory if the ambient tem-

perature does not fit within this range. NOTE: Temperature of the actuator's body can approach 180°F (82°C) in aggressive applications. Adequate clearance to ensure actuator's ambient conditions do not rise drastically should be allowed.

Brake considerations An unpowered IMA will require a brake to maintain its position if the force on the actuator exceeds Back Drive Force listed in the table on page IMA 6.

A brake can be used with the actuator to keep it from backdriving, typically in vertical applications. A brake may be used for safety reasons or for energy savings allowing the actuator to hold position when unpowered. See page IMA_19 for ordering information.

NOTE: The optional Spring-Applied/Electronically-Released Brake requires 24V power. Input current rating: IMA33 - 0.43 Amps; IMA44 - 0.67 Amps.

CHOOSE MOTOR CONNECTORS & FEEDBACK DEVICE

Connector choice and wiring emulates popular motor manufacturers for compatibility.

Current connector choices include:

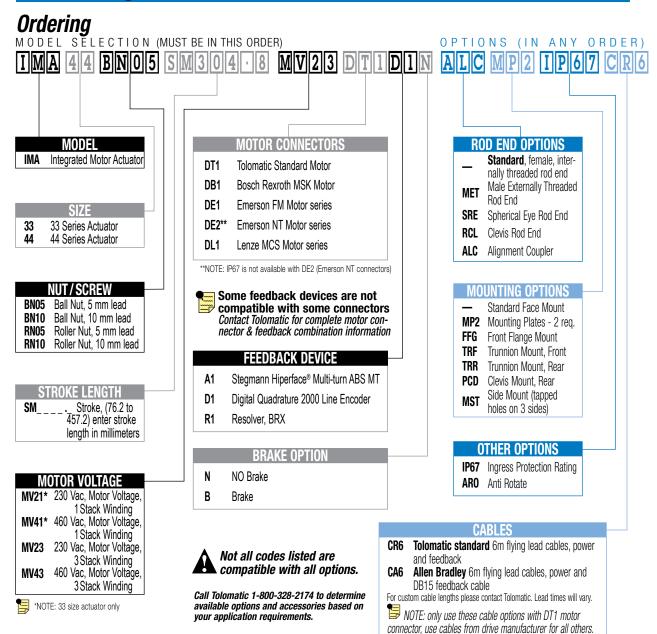
- Bosch Rexroth MSK Series
- Emerson FM & NT Series
- Lenze MCA Series

Current feedback choices include:

- Digital Encoder
- Absolute Encoder
- Resolver

Contact Tolomatic for additional motor connectors, feedback combinations and motor files for third party drives.

CONSIDER MOUNTING & ROD END OPTIONS


Examine mounting options dimensional drawings on page IMA_11-16. Standard mounting on the IMA are 4 tapped holes on the front rod end face of the actuator. The Side Mount option (MST) includes 12 tapped holes, 4 on each side and 4 on the bottom of the actuator. Other fixed mounting options are the Front Flange Mount (FFG) and Mounting Plates (MP2). Pivoting mount options are Front Trunnion (TRF), Rear Trunnion (TRR) and Rear Clevis Mount (PCD).

Rod End Options include: External Threaded Rod End (MET), Clevis Rod End (RCL), Spherical Rod Eye (SRE) and Alignment Coupler (ALC).

NOTE: Regardless of the mounting option chosen, care must be taken to ensure that the load is guided and in-line with the thrust rod's line of motion. Misalignment of the thrust rod's line of motion will cause degradation in the actuator's expected life.

1 CONSIDER ENVIRONMENTAL RATING AND ANTI-ROTATE OPTIONS

The environmental rating for a standard IMA is IP65, choose IP67 for protection against water and dust ingress. Choose the Anti-Rotate Option (ARO) if required. Call Tolomatic at 1-800-328-2174 for help in determining the best actuator for your application.

Replacement Option Parts Ordering

PART NO.	DESCRIPTION
2733-9014	Spherical Rod Eye Kit, IMA33
2744-9014	Spherical Rod Eye Kit, IMA44
2733-9015	Clevis Rod End Kit, IMA33
2744-9015	Clevis Rod End Kit, IMA44
2132-1060	Alignment Coupler Kit, IMA33
2150-1060	Alignment Coupler Kit, IMA44
2733-9010	Mounting Plate Kit, IMA33
2744-9010	Mounting Plate Kit, IMA44
2733-9018	Front Flange Mount Kit, IMA33
2744-9018	Front Flange Mount Kit, IMA44
2733-1045	Rear Clevis Mount, IMA33
2744-1045	Rear Clevis Mount, IMA44
2733-9075	Anti Rotate, Bearing Assy, IMA33 & IMA 44
2733-9074	Anti Rotate, Shaft Clamp, IMA33
2733-1211	Anti Rotate, Shaft, IMA33 - Indicate Stroke
2744-9074	Anti Rotate, Shaft Clamp, IMA44

PART NO.	DESCRIPTION
2744-1211	Anti Rotate, Shaft, IMA44 - Indicate Stroke
2733-1221	Motor Power Cable, IMA33 NO Brake
2733-1222	Motor Power Cable, IMA33 with Brake
2744-1221	Motor Power Cable, IMA44 NO Brake
2744-1222	Motor Power Cable, IMA44 with Brake
2733-1223	Feedback Cable, 12 pin (Resolver & Stegmann)
2733-1224	Feedback Cable, 17 pin (Digital Encoder)
2744-1016	Mobilith SHC220 Grease (Ball nut/screw)
2744-9099	Grease (Roller nut/screw)
2744-1213	Zerk Cap
2744-9092	Kit, Zerk with Cap
2744-1214	Grease Ftg. Plug

All parts are listed for REPLACEMENT ONLY. If not ordered on original unit the IMA may require additional tapped holes or replacement rod end. Contact Tolomatic.

THE TOLOMATIC DIFFERENCE What you expect from the industry leader:

EXCELLENT CUSTOMER SERVICE & TECHNICAL SUPPORT

Our people make the difference! Expect prompt, courteous replies to all of your application and product questions.

INDUSTRY LEADING DELIVERIES

Standard catalog products are built to order and ready-to-ship in 5 days or less. Modified and custom products ship weeks ahead of the competition.

INNOVATIVE PRODUCTS

From standard catalog products... to modified products... to completely unique custom products, Tolomatic designs and builds the best solutions for your challenging applications.

SIZING & SELECTION SOFTWARE

Windows® compatible, downloadable from our website – FREE – the best tool of its kind on the market! Product selection has never been easier.

3D MODELS & 2D DRAWINGS AVAILABLE ON THE WEB

Easy to access CAD files are available in many popular formats.

ALSO CONSIDER THESE OTHER TOLOMATIC PRODUCTS:

PNEUMATIC PRODUCTS

RODLESS CYLINDERS: Band Cylinders, Cable Cylinders, MAGNETICALLY COUPLED CYLINDERS/SLIDES; GUIDED ROD CYLINDER SLIDES
"FOLDOUT" BROCHURE #9900-9075 PRODUCTS BROCHURE #9900-4028 www.tolomatic.com/pneumatic

ELECTRIC PRODUCTS

ROD & GUIDED ROD STYLE ACTUATORS, HIGH THRUST ACTUATORS, SCREW & BELT DRIVE RODLESS ACTUATORS, MOTORS, DRIVES AND CONTROLLERS
"FOLDOUT" BROCHURE #9900-9074 PRODUCTS BROCHURE #9900-4016 www.tolomatic.com/electric

POWER TRANSMISSION PRODUCTS

GEARBOXES: Float-A-Shaft®, Slide-Rite®; DISC CONE CLUTCH; CALIPER DISC BRAKES
"FOLDOUT" BROCHURE #9900-9076 PRODUCTS BROCHURE #9900-4029 www.tol

3800 County Road 116 • Hamel, MN 55340 U.S.A. Toll-Free: 1-800-328-2174

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

